• ua
    • русский
    • English
  • русский 
    • ua
    • русский
    • English
  • Войти
Просмотр элемента 
  •   Главная
  • Автореферати та дисертації
  • Автореферати дисертацій
  • Просмотр элемента
  •   Главная
  • Автореферати та дисертації
  • Автореферати дисертацій
  • Просмотр элемента
JavaScript is disabled for your browser. Some features of this site may not work without it.

Рівняння нескінченних ланцюгів нелінійних осциляторів: задача Коші, періодичні розв’язки, біжучі хвилі : дис. ... канд. фіз.-мат. наук : 01.01.02

Thumbnail
Открыть
dis_канд.pdf (937.9Kb)
Дата
2007
Автор
Бак, Сергій Миколайович
Bak, Sergiy Mykolaiovych
Metadata
Показать полную информацию
Аннотации
Дисертація на здобуття наукового ступеня кандидата фізико-математичних наук за спеціальністю 01.01.02 – диференціальні рівняння. – Вінницький державний педагогічний університет імені Михайла Коцюбинського, Вінниця, 2007. Робота присвячена дослідженню нескінченних систем диференціальних рівнянь, які описують нескінченні ланцюги лінійно зв’язаних нелінійних осциляторів. Такі системи представляють собою нескінченновимірні гамільтонові системи в гільбертовому просторі l^2. Перш за все в роботі отримано результати про існування та єдиність глобальних розв’язків задачі Коші, а також результати про неіснування глобальних розв’язків. Далі вивчаються періодичні за часом розв’язки. Такі розв’язки описуються нелінійними різницевими рівняннями, які мають варіаційну структуру. За допомогою теореми про гірський перевал встановлено достатні умови існування періодичних розв’язків. У випадку степеневих потенціалів показано, що такі розв’язки можуть бути отримані за допомогою методу умовної мінімізації. У випадку просторово однорідних ланцюгів встановлено існування розв’язків, що мають вигляд біжучих хвиль. Показано, що профіль таких хвиль експоненціально спадає на нескінченності. The thesis deals with infinite systems of differential equation that describe infinite chains of linearly coupled nonlinear oscillators. Such systems are infinite dimensional Hamiltonian systems in the Hilbert space l^2. First of all, it is obtained results on existence and uniqueness of global solutions to the Cauchy problem, as well as nonexistence results for such solutions. Next, it is considered time periodic solutions that are described by certain difference equations having variational structure. By means of the mountain pass theorem, it is obtained sufficient conditions for the existence of such solutions. In the case of pure power potential it is shown that periodic solutions can be found by means of a constrained minimization approach. In the case of spatially homogeneous chains it is shown the existence of travelling wave solutions whose profile function decays exponentially at infinity.
URI
http://93.183.203.244:80/xmlui/handle/123456789/6638
Collections
  • Автореферати дисертацій

DSpace software copyright © 2002-2016  DuraSpace
Контакты | Отправить отзыв
Theme by 
Atmire NV
 

 

Просмотр

Весь DSpaceСообщества и коллекцииДата публикацииАвторыНазванияТематикаЭта коллекцияДата публикацииАвторыНазванияТематика

Моя учетная запись

ВойтиРегистрация

DSpace software copyright © 2002-2016  DuraSpace
Контакты | Отправить отзыв
Theme by 
Atmire NV