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Traveling waves in systems of oscillators on 2D-lattices
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Abstract. A system of differential equations that describes the dynamics of an infinite system of linearly
coupled nonlinear oscillators on a 2D-lattice is considered. The exponential estimate of the solution and
some results on the existence of periodic and solitary traveling waves are obtained.
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1. Introduction

In the present work, we study the equations describing the dynamics of an infinite system of linearly
coupled nonlinear oscillators positioned on a plane integer-valued lattice. Let qn,m(t) be the generalized
coordinate of the (n, m)-th oscillator at the time t. It is assumed that each oscillator interacts linearly
with its four nearest neighbors. The equations of motion of the system under consideration take the
form

q̈n,m = −U ′(qn,m) + c2
1(qn+1,m + qn−1,m − 2qn,m)

+ c2
2(qn,m+1 + qn,m−1 − 2qn,m), (n, m) ∈ Z

2. (1.1)

Equations (1.1) represent an infinite system of ordinary differential equations.
Similar systems are of interest in connection with numerous physical applications [1, 4, 5]. In

works [2,3,8], traveling waves in chains of oscillators were studied. The review of the available results
concerning such systems is given in [11].

The periodic solutions for a system of oscillators on a two-dimensional lattice were studied in [14],
and the traveling waves in similar systems of somewhat different types were considered in [6] and [7]
within other methods. In particular, the system with odd 2π-periodic nonlinearity was analyzed in [6].

Here, we will study the question about the existence of periodic and solitary traveling waves within
the method of critical points and will establish the exponential estimate of the profile of a traveling
wave.

2. Statement of the problem

Consider the system of oscillators with the potential

U(r) = −a

2
r2 + V (r).

Then the equation of motion takes the form

q̈n,m = c2
1�(1)qn,m + c2

2�(2)qn,m + aqn,m − V ′(qn,m), (2.1)
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where
(�(1)q)n,m = qn+1,m + qn−1,m − 2qn,m

and
(�(2)q)n,m = qn,m+1 + qn,m−1 − 2qn,m

are discrete Laplace operators, respectively, with respect to the variables n and m, and c2
1 > 0, c2

2 > 0.
If c2

1 = c2
2 = 1, then the linear operator on the right-hand side of (2.1) is a two-dimensional Laplace

discrete operator
(�q)n,m = qn+1,m + qn−1,m + qn,m+1 + qn,m−1 − 4qn,m.

A traveling wave has the form

qn,m(t) = u(n cos ϕ + m sin ϕ − ct),

and its profile u(s), where s = n cos ϕ + m sinϕ − ct, satisfies the equation

c2u′′(s) = c2
1(u(s + cos ϕ) + u(s − cos ϕ) − 2u(s))

+ c2
2(u(s + sinϕ) + u(s − sinϕ) − 2u(s)) + au(s) − V ′(u(s)). (2.2)

We note that the function of a continuous argument u(s), s ∈ R, is called the profile of a wave.
The constant c �= 0 is the velocity of the wave. If c > 0, then the wave propagates to the right, and if
c < 0, it moves to the left. Of interest are the nontrivial waves, whose profiles are not identically equal
to zero.

The important role is played by the quantity c0(ϕ) defined by the equation

c2
0(ϕ) = c2

1 cos2 ϕ + c2
2 sin2 ϕ. (2.3)

In the case of periodic traveling waves, the profile of a wave can be determined by solving Eq. (2.2)
with the condition of periodicity

u(s + 2k) = u(s), s ∈ R. (2.4)

The profile of a solitary wave is given by the solution of Eq. (2.2) with the boundary condition at
infinity

lim
s→±∞u(s) = u(±∞) = 0. (2.5)

We note that, in the case where ϕ ≡ 0, π/2 mod π, the wave propagates along the appropriate
coordinate axis. Such waves are reduced to those on a one-dimensional lattice that were studied in [2,3].
Thus, the results of the present work contain those in [2, 3] as particular cases.

Everywhere below, the solution of Eq. (2.2) means a function u(s) of the class C2(R) satisfying
Eq. (2.2) for all s ∈ R.

3. Variational statement of the problem

Everywhere below, we assume that the potential V (r) satisfies the condition

(h) the function V (r) is continuously differentiable, V (0) = 0, V ′(r) = o(r) as r → 0, and there exists
µ > 2 such that

0 < µV (r) ≤ V ′(r)r, r �= 0.
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We note that Eq. (2.2) includes only the square of the velocity c. This implies that if the function
u(s) satisfies Eq. (2.2), then there exist two traveling waves with the given profile and the velocities
±c. One wave moves to the right, and another one does to the left.

Equation (2.2) and condition (2.4) are related to a functional Jk defined on the space

Ek = {u ∈ H1
loc(R) : u(s + 2k) = u(s)}

with the norm

‖u‖k = (‖u‖2
L2(−k,k) + ‖u′‖2

L2(−k,k))
1/2 =

( k∫
−k

(u(s)2 + u′(s)2) ds

)1/2

.

Thus, Ek is the Sobolev space of 2k-periodic functions. The functional is defined by the equality

Jk(u) =

k∫
−k

{c2

2
(u′(s))2 − c2

1

2
(u(s + cos ϕ) − u(s))2

− c2
2

2
(u(s + sinϕ) − u(s))2 +

a

2
u2(s) − V (u(s))

}
ds. (3.1)

Problem (2.2), (2.5) is related to the functional

J(u) =

∞∫
−∞

{c2

2
(u′(s))2 − c2

1

2
(u(s + cos ϕ) − u(s))2

− c2
2

2
(u(s + sinϕ) − u(s))2 +

a

2
u2(s) − V (u(s))

}
ds, (3.2)

that is defined on the space E = H1(R) with the standard Sobolev norm.
We recall that, by the embedding theorem, Ek ⊂ C([−k, k]) and E ⊂ Cb(R), where C([−k, k]) and

Cb(R) is the space of continuous functions on [−k, k] and the space of bounded continuous functions
on R, respectively. Moreover, the functions from E have zero limit at infinity.

In what follows, we will need

Lemma 3.1. The inequalities

‖u(· + α) − u(·)‖L2(−k,k) ≤ |α|‖u′‖L2(−k,k), u ∈ Ek (3.3)

for any α ∈ (−k, k) and

‖u(· + α) − u(·)‖L2(R) ≤ |α|‖u′‖L2(R), u ∈ E (3.4)

for any α ∈ R are valid.

Proof. Let vα = u(s + α) − u(s), and let

û(ξ) =
1√
2π

+∞∫
−∞

e−iξtu(t) dt
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be the Fourier transform of the function u. Then

v̂α(ξ) = (eiαξ − 1)û(ξ).

We have
|v̂α(ξ)|2 = 2(1 − cos(αξ))|û(ξ)|2 = 4 sin2 αξ

2
|û(ξ)|2 ≤ α2ξ2|û(ξ)|2.

Inequality (3.4) follows now from the Parseval identity.
Inequality (3.3) can be proved similarly with the help of Fourier series.

Remark 3.1. It follows from the proof that the constant |α| in inequality (3.4) cannot be decreased.
For every fixed k, the constant |α| in (3.3) can be decreased. However, it is the least constant, at
which inequality (3.3) is valid for all k.

Lemma 3.2. Under the above assumptions, Jk and J are functionals of the class C1 on Ek and E,
respectively. Their derivatives are given by the formulas

〈J ′
k(u), h〉 =

k∫
−k

{c2u′(s)h′(s) + c2
1(u(s + cos ϕ)

+ u(s − cos ϕ) − 2u(s))h(s) + c2
2(u(s + sin ϕ) + u(s − sin ϕ)

− 2u(s))h(s) + au(s)h(s) − V ′(u(s))h(s)} ds (3.5)

and

〈J ′(u), h〉 =

∞∫
−∞

{c2u′(s)h′(s) + c2
1(u(s + cos ϕ)

+ u(s − cos ϕ) − 2u(s))h(s) + c2
2(u(s + sin ϕ) + u(s − sin ϕ)

− 2u(s))h(s) + au(s)h(s) − V ′(u(s))h(s)} ds (3.6)

for u, h ∈ Ek and u, h ∈ E, respectively.

Proof. By virtue of Lemma 3.1, the quadratic part of the functional Jk is a continuous quadratic
functional on Ek and, hence, belongs to the class C1.

Consider the nonquadratic part

Ψk(u) =

k∫
−k

V (u(s)) ds.

It is sufficient to demonstrate that Ψk belongs to the class C1 on every open ball of the space Ek

with the center at zero. Let Br0 be such a ball with radius r0 > 0. By the embedding theorem,
Br0 ⊂ B̃r1 , where B̃r1 is an open ball of some radius r1 in the space C([−k, k]). We now fix arbitrarily
a continuously differentiable function Ṽ (r) such that Ṽ (r) = r at |r| ≥ r2, where r2 > r1 is sufficiently
large.

Consider the functional

Ψ̃k(u) =

k∫
−k

Ṽ (u(s)) ds.
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By construction, Ψ̃k coincides with Ψk on the ball Br0 . By virtue of the classical results in [9,15], Ψ̃k

is a C1 functional on L2(−k, k) and, hence, on the space Ek continuously embedded in it. This implies
that Ψ̃k belongs to the class C1 on Br0 and, by virtue of the arbitrariness of r0, on the whole Ek.

We can similarly prove that the functional J belongs to the class C1.
Formulas (3.5) and (3.6) for the derivatives can be obtained by the direct calculation.

Lemma 3.3. Critical points of the functionals Jk and J are C2-solutions of Eq. (2.2) that satisfy
conditions (2.4) and (2.5), respectively.

Proof. Let us consider the case of the functional J (the second case is similar). By the embedding
theorem, every element u ∈ E satisfies condition (2.5). Therefore, it is sufficient only to verify that
critical points of J are C2-solutions of (2.2).

Let u ∈ E be a critical point of the functional J. Then 〈J(u), h〉 = 0 for any h ∈ E. We choose
h = ϕ ∈ C∞

0 (R) arbitrarily and use formula (3.6). We have

∞∫
−∞

{c2u′(s)h′(s) + c2
1(u(s + cos ϕ)

+ u(s − cos ϕ) − 2u(s))h(s) + c2
2(u(s + sin ϕ) + u(s − sin ϕ)

− 2u(s))h(s) + au(s)h(s) − V ′(u(s))h(s)} ds = 0.

This means that u satisfies Eq. (2.2) in the sense of distributions. By the embedding theorem,
u ∈ Cb(R). Hence, the right-hand side of (2.2) is a continuous function. So, we conclude that u′′ is a
continuous function, and, hence, u ∈ C2 is the solution of Eq. (2.2) in the classical sense.

4. Main results

We need

Lemma 4.1. Let condition (h) be satisfied, let a > 0, and let c2 > c2
0(ϕ). Then there exist ε0 > 0 and

γ > 0 that are independent of k ≥ 1 and such that the inequalities

ε0 ≤ ‖u‖2
k ≤ γJk(u), (4.1)

ε0 ≤ ‖u‖2 ≤ γJ(u) (4.2)

are valid for nontrivial critical points of the functionals Jk and J.

Proof. Let u ∈ Ek be a critical point of the functional Jk. Then J ′
k(u) = 0, and

Jk(u) = Jk(u) − 1
µ
〈J ′

k(u), u〉 =
(1

2
− 1

µ

) k∫
−k

{c2|u′(s)|2 − c2
1|u(s + cos ϕ) − u(s)|2

− c2
2|u(s + sinϕ) − u(s)|2 + a|u(s)|2} ds −

k∫
−k

{
V (u(s)) − 1

µ
V ′(u(s))u(s)

}
ds

≥ µ − 2
2µ

{
c2

k∫
−k

|u′(s)|2 ds − c2
1

k∫
−k

|u(s + cos ϕ) − u(s)|2 ds
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− c2
2

k∫
−k

|u(s + sinϕ) − u(s)|2 ds + a

k∫
−k

|u(s)|2 ds

}
.

Using Lemma 3.1, we obtain

Jk(u) ≥ µ − 2
2µ

{
α0

k∫
−k

|u′(s)|2 ds + a

k∫
−k

|u(s)|2 ds

}
,

where α0 = c2 − c2
0(ϕ). Then

Jk(u) ≥ µ − 2
2µ

α1

{ k∫
−k

|u′(s)|2 ds +

k∫
−k

|u(s)|2 ds

}
=

µ − 2
2µ

α1‖u‖2
k,

where α1 = min{α0, a}. This yields the second inequality (4.1).
We now prove the first inequality in (4.1). For a critical point u ∈ Ek, we have 〈J ′

k(u), u〉 = 0, i.e.,

k∫
−k

{c2|u′(s)|2 − c2
1|u(s + cos ϕ) − u(s)|2 − c2

2|u(s + sinϕ) − u(s)|2 + a|u(s)|2} ds =

k∫
−k

V ′(u(s)) ds.

Hence, as above, we have

α1‖u‖2
k ≤

k∫
−k

V ′(u(s))u(s) ds. (4.3)

Condition (h) yields
V ′(r)r ≤ σ(|r|)r2,

where σ(r) is a monotonically increasing continuous function of r ≥ 0, and σ(0) = 0. Then (4.3) yields

α1‖u‖2
k ≤ σ(‖u‖C([−k,k]))

k∫
−k

|u(s)|2 ds.

By the embedding theorem,
‖u‖C([−k,k]) ≤ C · ‖u‖k

with a constant C independent of k. Hence,

α1‖u‖2
k ≤ σ(C · ‖u‖k)‖u‖2

k.

Since u �= 0, we have
σ(C · ‖u‖k) ≥ α1.

This yields the first inequality in (4.1) with

ε
1/2
0 = C−1 · σ−1(α1).

Inequality (4.2) can be proved similarly with the same constants ε0 and γ.
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4.1. Existence of periodic traveling waves

With the help of the mountain pass theorem, we will prove the existence of nontrivial traveling
waves with periodic profile. By virtue of Lemma 3.3, it is sufficient to establish the existence of
nontrivial critical points of the functional Jk. We note that u = 0 is always a trivial critical point and
gives a trivial traveling wave equal to zero.

Theorem 4.1. Let condition (h) be satisfied, and let a > 0. Then, for any k ≥ 1 and c2 > c2
0(ϕ),

Eq. (2.2) has a solution u satisfying condition (2.4). Therefore, there exist two traveling waves with
a profile u and velocities ±c. Moreover, there exist constants ε > 0 and C > 0 that are independent of
k and such that

ε0 ≤ ‖u‖2
k ≤ C, (4.4)

ε0 ≤ Jk ≤ C. (4.5)

We now formulate the mountain pass theorem in the required form and verify its conditions for the
functional Jk ([12, 16]).

Theorem 4.2 (on a mountain pass). Let I be a functional of the class C1 on a Hilbert space H
that satisfies the Palais–Smale condition:

(PS) if a sequence un ∈ H is such that I ′(un) → 0, and I(un) is bounded, then it contains a convergent
subsequence.

We assume that there exist e ∈ H and r > 0 such that ‖e‖ > r and

β := inf
‖v‖=r

I(v) > 0 = I(0) ≥ I(e) .

Then there exists a critical point u ∈ H of the functional I such that I(u) ≥ β. In this case,

I(u) ≤ sup
τ≥0

I(τe) .

Let us start with the Palais–Smale condition.

Lemma 4.2. Under conditions of Theorem 4.1, the functional Jk satisfies the Palais–Smale condition.

Proof. Let um ∈ Ek be a sequence such that J ′
k(um) → 0 and Jk(um) ≤ C. Then, like in the beginning

of the proof of Lemma 4.1, we have

Jk(um) − 1
µ
〈J ′

k(um), um〉 =
(1

2
− 1

µ

) k∫
−k

{c2u′
m(s)2 − c2

1|u(s + cos ϕ) − u(s)|2

− c2
2|u(s + sinϕ) − u(s)|2 + aum(s)2} ds −

k∫
−k

{
V (um(s)) − 1

µ
V ′(um(s))um(s)

}
ds

≥ µ − 2
2µ

{
c2

k∫
−k

u′
m(s)2 ds − c2

1

k∫
−k

|u(s + cos ϕ) − u(s)|2 ds

− c2
2

k∫
−k

|u(s + sinϕ) − u(s)|2 ds + a

k∫
−k

um(s)2 ds

}
.
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Like in the proof of Lemma 4.1, the lower bound of the right-hand side of this inequality is as follows:

µ − 2
2µ

α1‖um‖2
k.

On the other hand, its left-hand side does not exceed

C +
1
µ

C1‖um‖k.

Hence,
µ − 2
2µ

α1‖um‖2
k ≤ C +

1
µ

C1‖um‖k,

which yields the boundedness of the sequence um in the space Ek.

Since the space Ek is a Hilbert one, we may assume that um → u weakly in Ek. According to the
compactness of the embedding Ek ⊂ C([−k, k]), the last convergence is strong in C([−k, k]).

For the sake of brevity, we set um,l = um − ul. According to Lemma 3.2, we have

〈J ′
k(um) − J ′

k(ul), um,l〉 =

k∫
−k

{c2(um,l(s))2 − c2
1(um,l(s + cos ϕ) − um,l(s))2

− c2
2(um,l(s + sin ϕ) − um,l(s))2 + a(um,l(s))2} ds

−
k∫

−k

{V ′(um(s)) − V ′(ul(s))}um,l(s) ds.

Hence, with the help of the same trick, like that in the proof of Lemma 4.1, we obtain

〈J ′
k(um) − J ′

k(ul), um,l〉 ≥ α1‖um,l‖2
k −

k∫
−k

{V ′(um(s)) − V ′(ul(s))}um,l ds,

or

α1‖um,l‖2
k ≤ 〈J ′

k(um) − J ′
k(ul), um,l〉 +

k∫
−k

{V ′(um(s)) − V ′(ul(s))}um,l ds. (4.6)

Since um,l → 0 weakly in Ek, and J ′
k(um) → 0 strongly in the dual space E∗

k , the first term on the
right-hand side of (4.6) converges to zero as m, l → ∞. In addition, um → u in C([−k, k]). This
implies that the integrand in (4.6) converges to zero uniformly on [−k, k] as m, l → ∞. Hence, the
integral term in (4.6) converges to zero as well. This implies that um is a Cauchy sequence in Ek, and,
hence, um → u strongly in Ek.

Lemma 4.3. Under conditions of Theorem 4.1, there exist r0 > 0 and α0 > 0 that are independent
of k and such that

inf
‖u‖k=r0

Jk(u) > α0.
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Proof. According to condition (h),
V (r) ≤ µ−1σ(|r|))r2.

Hence, we have

Jk(u) =
1
2

k∫
−k

{c2u′(s)2 − c2
1|u(s + cos ϕ) − u(s)|2

− c2
2|u(s + sinϕ) − u(s)|2 + au(s)2} ds −

k∫
−k

V (u(s)) ds

≥ α1

2
‖u‖2

k − 1
µ

k∫
−k

σ(u(s))u(s)2 ds ≥ α1

2
‖u‖2

k − 1
µ

σ(‖u‖C([−k,k]))‖u‖2
L2(−k,k)

≥ α1

2
‖u‖2

k − 1
µ

σ(‖u‖C([−k,k]))‖u‖2
k.

By the embedding theorem,
‖u‖C([−k,k]) ≤ C‖u‖k.

Therefore,

Jk(u) ≥
{α1

2
− 1

µ
σ(C‖u‖k)

}
‖u‖2

k.

We choose r0 > 0 such that
1
µ

σ(Cr0) =
α1

4
.

This is obviously possible by virtue of properties of the function σ(r). Then, at ‖u‖k = r0, we have

Jk(u) ≥ α1r
2
0

4
,

which proves the lemma.

Let us fix an arbitrary infinitely differentiable function g �= 0 on R with support in the interval
[0, 1]. Let now vk be a 2k-periodic function such that vk|[−k,k] = g|[−k,k]. It is obvious that vk ∈ Ek.

Lemma 4.4. Under conditions of Theorem 4.1, there exists τ0 > 0 that is independent of k and such
that

Jk(τvk) = J1(τv1) ≤ 0

for all τ ≥ τ0.

Proof. By the definition of vk, we have

Jk(τvk) =
1
2

k∫
−k

{c2τ2(g′(s))2 − τ2c2
1|g(s + cos ϕ)− g(s)|2 − τ2c2

2|g(s + sinϕ)− g(s)|2 + aτ2(g(s))2} ds

445



−
k∫

−k

V (τg(s)) ds =
τ2

2

1∫
−1

{c2(g′(s))2 − c2
1|g(s + cos ϕ)− g(s)|2 − c2

2|g(s + sinϕ)− g(s)|2 + a(g(s))2} ds

−
1∫

0

V (τg(s)) ds

at k ≥ 1. Condition (h) yields
V (τg(s)) ≥ dτµ|g(s)|µ − d0.

Therefore,
Jk(τvk) = J1(τv1) ≤ γ1τ

2 − dγ2τ
µ − d0,

where

γ1 =
1
2

1∫
−1

{c2(g′(s))2 − c2
1|g(s + cos ϕ) − g(s)|2 − c2

2|g(s + sin ϕ) − g(s)|2 + a(g(s))2} ds > 0,

γ2 =

1∫
−1

|g(s)|µ ds > 0.

Since µ > 2, this yields the assertion of the lemma.

Proof of Theorem 4.1. Lemmas 4.2–4.4 show that the functional Jk satisfies all conditions of the moun-
tain pass theorem. Hence, Jk has a nonzero critical point u ∈ Ek. By Lemma 3.3, u is a C2-solution
of problem (2.2), (2.4). The lower bounds for ‖u‖k and Jk(u) follow from Lemma 4.1. By virtue of
Lemma 4.4,

Jk(u) ≤ sup
τ≥0

Jk(τvk) = sup
τ≥0

J1(τv1) = C,

and the upper bound for ‖u‖k follows from Lemma 4.1. The theorem is proved.

4.2. Existence of solitary traveling waves

We now prove the existence of solitary traveling waves. In this case, the traveling waves are
determined as critical points of the functional J that satisfies the propositions analogous to Lemmas 4.3
and 4.4. Thus, the functional J satisfies a part of conditions of the mountain pass theorem. However,
the Palais–Smale condition for this functional is not satisfied. Therefore, in this case, critical points
will be constructed in another way, by considering critical points of the functional Jk and then passing
to the limit as k → ∞.

Theorem 4.3. Let condition (h) be satisfied, and let a > 0. Then, for any c2 > c2
0(ϕ), Eq. (2.2) has

a solution u ∈ E satisfying, hence, condition (2.5). Thus, there exist two solitary traveling waves with
a profile u and velocities ±c.

To prove the theorem, we need the following particular case of Lemma 4.1 from [10].
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Lemma 4.5. Let un ∈ Ekn , where kn → ∞, and let ‖un‖kn be bounded. If, for some r > 0,

sup
y∈R

y+r∫
y−r

|un(s)|2 ds → 0, (4.7)

then ‖un‖Lp(−kn,kn) → 0 for any p > 2.

Proof of Theorem 4.3. Let us choose arbitrarily a sequence kn → ∞. By un ∈ Ekn , we denote the
solution of Eq. (2.2) under condition (2.4) that is constructed in Theorem 4.1 with k = kn.

Passing to a subsequence, we may assume that there exist δ > 0, r > 0, and a sequence yn ∈ R

such that
yn+r∫

yn−r

|un(s)|2 ds ≥ δ. (4.8)

Indeed, assume the contrary. Then, for any r > 0,

lim
n→∞ sup

y∈R

y+r∫
y−r

|un(s)|2 ds = 0.

In addition, by virtue of inequality (4.4), the sequence ‖un‖kn is bounded. Hence, according to
Lemma 4.5, it follows that

‖un‖Lp(−kn,kn) → 0. (4.9)

Further, J ′
k(un) = 0 and, hence, 〈J ′

k(un), un〉 = 0, i.e.,

kn∫
−kn

{c2(u′
n(s))2 − c2

1|un(s + cos ϕ) − un(s)|2 − c2
2|un(s + sinϕ) − un(s)|2 + a(un(s))2} ds

=

kn∫
−kn

V ′(un(s))un(s) ds.

This yields

α1‖un‖2
kn

≤
kn∫

−kn

V ′(un(s))un(s) ds. (4.10)

By virtue of the embedding theorem, the functions un(s) are continuous and uniformly bounded in n,
i.e., there exists R > 0 such that |un(s)| ≤ R. Let us fix an arbitrary p > 2. According to condition
(h), for any ε > 0, there exists C = Cε such that

|V ′(r)| ≤ ε|r| + C|r|p−1

at |r| ≤ R. Then inequality (4.10) yields

α1‖un‖2
kn

≤ ε

kn∫
−kn

|un(s)|2 ds + C

kn∫
−kn

|un(s)|p ds
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= ε‖un‖2
L2(−kn,kn) + C‖un‖p

Lp(−kn,kn) ≤ ε‖un‖2
kn

+ C‖un‖p
(−kn,kn).

Choosing ε = α1/2, we obtain
α1

2
‖un‖2

kn
≤ C‖un‖p

Lp(−kn,kn).

Then, according to (4.9), ‖un‖kn → 0, which contradicts the first inequality in (4.4). Thus, (4.8) is
proved.

Equation (2.2) is translation invariant. Therefore, if u(s) is its solution, then u(s + y) is also a
solution for any y ∈ R. Hence, replacing un(s) by un(s + yn), we may assume that (4.8) is satisfied
with yn = 0.

Since ‖un‖kn is bounded, we may assume, by passing to a subsequence, that un → u weakly in
H1

loc(R), i.e., weakly in H1(a, b) for any finite interval (a, b). According to the embedding theorem,
un → u uniformly on any finite interval. Therefore, we can pass to the limit in inequality (4.8) (with
yn = 0) and obtain

r∫
−r

|u(s)|2 ds ≥ δ.

This shows that u �= 0.

We now prove that u ∈ E. Let us choose arbitrarily b > 0. For sufficiently large n, we have

b∫
−b

{|u′
n(s)|2 + |un(s)|2} ds ≤

kn∫
−kn

{|u′
n(s)|2 + |un(s)|2} ds ≤ C,

by virtue of the boundedness of ‖un‖kn . Since un → u weakly in H1(−b, b), we have

b∫
−b

{|u′(s)|2 + |u(s)|2} ds ≤ lim
n→∞ inf

b∫
−b

{|u′
n(s)|2 + |un(s)|2} ds ≤ C.

Since b is arbitrary, this yields

‖u‖2 =

∞∫
−∞

{|u′(s)|2 + |u(s)|2} ds ≤ C < ∞,

i.e., u ∈ E.

It remains to verify that u is a solution of Eq. (2.2). Let g(s) be any infinitely differentiable function
with a compact support supp g(s) ⊂ [−b, b]. For sufficiently large n, the interval (−kn + 1, kn − 1)
contains [−b, b], and, hence, the function gn ∈ Ekn that coincides with g on (−kn, kn) is well-defined.
Since un is a critical point of the functional Jk, we have

0 = 〈J ′
kn

(un), gn〉 =

kn∫
−kn

{c2u′
n(s)g′n(s) − c2

1(un(s + cos ϕ) + un(s − cos ϕ)
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− 2un(s))gn(s) − c2
2(un(s + sinϕ) + un(s − sin ϕ) − 2un(s))gn(s)

+ aun(s)gn(s)} ds −
kn∫

−kn

V ′(un(s))gn(s) ds

=

b∫
−b

{c2u′
n(s)g′(s) − c2

1(un(s + cos ϕ) + un(s − cos ϕ) − 2un(s))g(s)

− c2
2(un(s + sin ϕ) + un(s − sin ϕ) − 2un(s))g(s) + aun(s)g(s)} ds −

b∫
−b

V ′(un(s))g(s) ds.

In the first integral on the right-hand side of this equality, we can pass to the limit as n → ∞, since
un → u weakly in H1(−b, b). According to the embedding theorem, un → u uniformly on [−b, b].
Therefore, we can pass to the limit in the second integral as well. Thus,

0 =

b∫
−b

{c2u′(s)g′(s) − c2
1(un(s + cos ϕ) + un(s − cos ϕ)

− 2un(s))g(s) − c2
2(un(s + sinϕ) + un(s − sin ϕ) − 2un(s))g(s)

+ au(s)g(s)} ds −
b∫

−b

V ′(u(s))g(s) ds

=

∞∫
−∞

{c2u′(s)g′(s) − c2
1(un(s + cos ϕ) + un(s − cos ϕ)

− 2un(s))g(s) − c2
2(un(s + sinϕ) + un(s − sin ϕ) − 2un(s))g(s)

+ au(s)g(s) − V ′(u(s))g(s)} ds = 〈J ′(u), g〉.
Since g is any infinitely differentiable function with a compact support, and the set of such functions
is dense in E, we have J ′(u) = 0. This means that u is a critical point of the functional J and, hence,
a solution of the problem under consideration. The theorem is proved.

4.3. Exponential decay of the profile of a solitary wave

Equation (2.2) can be written in the form

Lu = f(u), (4.11)

where

Lu(t) = −c2u′′(t) + c2
1(u(t + cos ϕ) + u(t − cos ϕ) − 2u(t))

+ c2
2(u(t + sinϕ) + u(t − sin ϕ) − 2u(t)) + au(t) (4.12)

and f(r) = V ′(r). As for the function f(r), we made the following assumption weaker than (h):

(h′) f(r) is continuous on R, f(0) = 0, f(r) = o(r) as r → 0, and f(r) = 0 at r �= 0.
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We now consider solutions lying in the space E = H1(R). Let u ∈ E be such a solution. We set

g(t) =
f(u(t))

u(t)

(if u(t) = 0, then g(t) = 0 by definition). Condition (h′) yields

lim
t→±∞ g(t) = 0.

Equation (4.11) takes the form
Lu(t) = g(t) · u(t). (4.13)

By applying the Fourier transformation to Eq. (3.1), we obtain

σ(ξ)û(ξ) = ĝ · u(ξ), (4.14)

where
σ(ξ) = c2ξ2 − 4c2

1 sin2
(ξ

2
cos ϕ

)
− 4c2

2 sin2
(ξ

2
sinϕ

)
+ a. (4.15)

We note that the function σ(ξ), ξ ∈ R, extends to the entire function

σ(ζ) = c2ζ2 − 4c2
1 sin2

(ζ

2
cos ϕ

)
− 4c2

2 sin2
(ζ

2
sinϕ

)
+ a, ζ ∈ C.

Lemma 4.6. Let c2 > c2
0(ϕ), and let a > 0. Then there exists β0 > 0, such that the function σ(ζ) has

no zeros in the strip | Im ζ| < β0.

Proof. First of all, we note that σ(ξ) > 0 at all ξ ∈ R, and, hence, σ does not vanish on the real axis.
Indeed, from the inequality

| sinx| ≤ |x|,
we have

σ(ξ) = c2 − 4c2
1 sin2

(ξ

2
cos ϕ

)
− 4c2

2 sin2
(ξ

2
sinϕ

)
+ a

≥ c2ξ2 − ξ2(c2
1 cos2 ϕ + c2

2 sin2 ϕ) + a ≥ (c2 − c2
0(ϕ))ξ2 + a ≥ a > 0.

Let now A > 0 be arbitrary, and let | Im ζ| < A. Writing ζ in the form ζ = ζ + iτ, we have |τ | < A
and

∣∣∣ sin
(ζ

2
cos ϕ

)∣∣∣ =
1
2
|eiζ cos ϕ/2 − e−iζ cos ϕ/2|

=
1
2
|eiξ cos ϕ/2e−τ cos ϕ/2 − e−iξ cos ϕ/2eτ cos ϕ/2|

≤ 1
2
(|eiξ cos ϕ/2e−τ cos ϕ/2| + |e−iξ cos ϕ/2eτ cos ϕ/2|)

=
1
2
(e−τ cos ϕ/2 + eτ cos ϕ/2) ≤ eA| cos ϕ|/2.

Thus, ∣∣∣ sin2
(ζ

2
cos ϕ

)∣∣∣ ≤ eA| cos ϕ|.
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Similarly, ∣∣∣ sin2
(ζ

2
sinϕ

)∣∣∣ ≤ eA| sin ϕ|.

Then
|σ(ξ + iτ)| ≥ c2|ξ + iτ |2 − 4c2

1e
A| cos ϕ| − 4c2

2e
A| sin ϕ| + a.

Therefore, if |ξ| is sufficiently large, and if |τ | < A, then |σ(ξ + iτ)| > 0, and, hence, σ(ζ) �= 0 for
such ζ = ξ + iτ. Thus, there exists B > 0 such that the function σ(ζ) does not vanish whenever
|τ | < A, |ξ| ≥ B. In addition, the analytic function σ(ζ) can have at most a finite number of zeros in
the rectangle |ξ| < B, |τ | < A. This yields immediately the existence of β0 > 0 such that the function
σ(ζ) has no zeros in the strip |τ | < β0.

Further, we need the following proposition ([11, Lemma 4.8]).

Lemma 4.7. Let f(t) and g(t) be bounded nonnegative functions on R, and limt→±∞ g(t) = 0. Let
also

f(t) ≤
+∞∫

−∞
e−β|t−s|g(s)f(s) ds,

with β > 0. Then, for any α ∈ (0, β), there exists a constant C = C(α) such that

f(t) ≤ Ce−α|t|.

The following theorem is valid:

Theorem 4.4. Let condition (h′) be satisfied, let c2 > c2
0(ϕ), and let a > 0. If u ∈ E is a solution of

Eq. (2.2), then, for any β ∈ (0, β0), where β0 is defined in Lemma 4.6, there exists Cβ > 0 such that

|u(t)| ≤ Cβe−β|t|. (4.16)

Proof. Equation (3.2) yields

û(ξ) =
1

σ(ξ)
ĝ · u(ξ).

Let

K(t) =
1√
2π

+∞∫
−∞

eitξ · 1
σ(ξ)

dξ.

Then

u(t) = [K ∗ (g · u)](t) =

+∞∫
−∞

K(t − s)g(s)u(s) ds. (4.17)

According to Lemma 4.6, the function 1/σ(ζ) is analytic in the strip | Im ζ| < β0. Therefore, by
the Paley–Wiener theorem (see [13, Theorem IX.14]), the estimate

|K(t)| ≤ Cβe−β|t|

is valid for any β ∈ (0, β0). Equation (4.17) yields

|u(t)| ≤ Cβ

+∞∫
−∞

e−β|t−s||g(s)||u(s)| ds.

Now, by virtue of Lemma 4.7, we obtain Q.E.D.
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Since condition (h) is stronger than condition (h′), Theorem 4.4 yields

Corollary 1. Under conditions of Theorem 4.4, the solution u satisfies the exponential estimate (4.16)
for any β ∈ (0, β0).
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