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The article deals with the Fermi–Pasta–Ulam system that describes an infinite system
of particles on 2D–lattice. The main result concerns the existence of solitary traveling wave
solutions. By means of critical point theory, we obtain sufficient conditions for the existence of
such solutions.

1. Introduction. In the present paper we study the Fermi–Pasta–Ulam system that descri-
bes the dynamics of an infinite system of nonlinearly coupled particles on two dimensional
lattice. Let qn,m(t) be a generalized coordinate of the (n,m)-th particle at time t. It is
assumed that each particle interacts nonlinearly with its four nearest neighbors. The equati-
on of motion of the system considered is of the form

q̈n,m = U ′(qn+1,m − qn,m) − U ′(qn,m − qn−1,m)+

+U ′(qn,m+1 − qn,m) − U ′(qn,m − qn,m−1), (n,m) ∈ Z2, (1)

where U is the potential of interaction. Equations (1) form an infinite system of ordinary
differential equations.

Systems of such type are of interest in view of numerous applications in physics [1], [17],
[18]. A comprehensive presentation of existing results on traveling waves for 1D Fermi-Pasta-
Ulam lattices is given in [23]. The existence of periodic traveling waves in Fermi–Pasta–Ulam
system on 2D–lattice is studied in [3].

On the other hand, some results on chains of oscillators are known in the literature. In
particular, in [21] certain results of such type are obtained by means of bifurcation theory,
while in [9] and [13] the existence of periodic and solitary traveling waves is studied by means
of critical point theory. In papers [4], [15], [19], [20] traveling waves for infinite systems of
linearly coupled oscillators on 2D–lattice are studied, while [8] and [24] deal with periodic in
time solutions for such systems. Paper [22] is devoted to periodic and homoclinic traveling
waves for infinite one-dimensional chain of nonlinearly coupled nonlinear particles. In [6]
it is obtained a result on the existence of subsonic periodic traveling waves for the system
of nonlinearly coupled nonlinear oscillators on 2D–lattice, while in [7] supersonic periodic
traveling waves for such systems are studied.
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Papers [11], [14], [16] are devoted to the well-posedness of initial value problem for infinite
systems of linearly coupled nonlinear oscillators on 2D–lattice.

In paper [2] it is obtained a result on the existence of heteroclinic traveling waves for the
discrete sine–Gordon equation with linear interaction on 2D–lattice. Paper [10] is devoted to
the existence of periodic traveling waves for the discrete sine–Gordon equation with nonlinear
interaction on 2D–lattice, while in [12] it is obtained a result on existence of heteroclinic
traveling waves for such equation.

In the present paper we obtain, by means of critical point theory, a result on the existence
of solitary traveling waves for the Fermi–Pasta–Ulam system on 2D–lattice. This paper
extends some of results obtained in [23].

2. Statement of a problem. A traveling wave solution of Eq. (1) is a function of the form

qn,m(t) = u(n cosφ + m sinφ− ct) ,

where the profile function u(s) of the wave, or simply profile, satisfies the equation

c2u′′(s) = U ′(u(s + cosφ) − u(s)) − U ′(u(s) − u(s− cosφ))+

+U ′(u(s + sinφ) − u(s)) − U ′(u(s) − u(s− sinφ)). (2)

The constant c ̸= 0 is called the speed of the wave. Without loss of generality, we assume
that c > 0 because otherwise we can replace φ by φ + π.

We consider two types of solutions:
— periodic traveling waves;
— solitary traveling waves.
In the first case profile satisfies periodic condition (see [23])

u′(s + 2k) = u′(s), s ∈ R, (3)

and in the second case profile satisfies boundary condition

lim
s→±∞

u′(s) = u′(±∞) = 0. (4)

In what follows, a solution of Eq. (2) is understood as a function u(s) from the space
C2(R) satisfying Eq. (2) for all s ∈ R.
3. Periodic waves. The following results are obtained in [3].

Let Ek be the Hilbert space defined by

Ek = {u ∈ H1
loc(R) : u′(s + 2k) = u′(s), u(0) = 0}

with the scalar product

(u, v)k =

∫ k

−k

u′(s)v′(s)ds

and corresponding norm ∥u∥k = (u, u)
1
2 . Ek is 1-codimensional subspace of the Hilbert space

Ẽk = {u ∈ H1
loc(R) : u′(s + 2k) = u′(s)}

with ∫ k

−k

u′(s)v′(s)ds + u(0)v(0)
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as the scalar product.
On Ẽk we define operators Ẽk → Ẽk :

(Au)(s) := u(s + cosφ) − u(s) =

∫ s+cosφ

s

u′(τ)dτ,

(Bu)(s) := u(s + sinφ) − u(s) =

∫ s+sinφ

s

u′(τ)dτ.

We introduce the functional

Jk(u) :=

∫ k

−k

{c2

2
|u′(s)|2 − U(Au(s)) − U(Bu(s))

}
ds

defined on the space Uk.
We assume that

(i) function U(r) is C1 on R and U(0) = U ′(0) = 0.

Then any critical point of Jk is C2–solution of (2) satisfying (3) (see [3], Lemma 3).
Now we impose the following conditions:

(i′) U(r) =
c20
2

+ V (r), where c0 ≥ 0, V ∈ C1(R), V (0) = V ′(0) = 0 and V ′(r) = o(|r|) as
r → 0,

and either

(ii+) there exist r0 > 0 and µ > 2 such that V (r0) > 0 and for r ≥ 0

0 ≤ µV (r) ≤ rV ′(r),

or

(ii−) there exist r0 < 0 and µ > 2 such that V (r0) > 0 and for r ≤ 0

0 ≤ µV (r) ≤ rV ′(r).

The following theorem ([3], Theorem 1) is obtained with the aid of the mountain pass
theorem.

Theorem 1. Assume (i′) and k ≥ 1. Then

(a) under assumption (ii+) for every c > c0 equation (2) has a nontrivial nondecreasing
solution uk ∈ Ek;

(b) under assumption (ii−) for every c > c0 equation (2) has a nontrivial nonincreasing
solution uk ∈ Ek.

Moreover, in both cases there exist δ > 0 and M > 0, independent of k, such that the
corresponding critical value Jk(uk) satisfies

0 < δ ≤ Jk(uk) ≤ M.

We note that from the point of view of physics, increasing waves are expansion waves,
while decreasing waves are compression waves. The next theorem ([3], Theorem 4) concerns
the existence of not necessary monotone waves.
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Theorem 2. Assume
(i′′) U(r) = a

2
r2 + V (r), where V ∈ C1(R), V (0) = V ′(0) = 0 and V ′(r) = o(|r|) as r → 0;

(ii′) there exist r0 ∈ R and µ > 2 such that V (r0) > 0 and

µV (r) ≤ rV ′(r), r ∈ R.

Let c2 > max{a, 0}. Then for every k ≥ 1 equation (2) has a nontrivial solution uk satis-
fying (3). Moreover, there exist δ > 0 and M > 0, independent of k, such that the
corresponding critical value Jk(uk) satisfies

0 < δ ≤ Jk(uk) ≤ M.

4. Solitary waves. In a sense, the case of solitary waves is a limit case of the periodic waves.
Therefore, solitary waves will be constructed by considering critical points of the functional
Jk and then passing to the limit as k → ∞.

4.1. Variational setting. Let E be the Hilbert space defined by

E = {u ∈ H1
loc(R) : u′ ∈  L2(R), u(0) = 0}

with the scalar product

(u, v) =

∫ +∞

−∞
u′(s)v′(s)ds

and corresponding norm ∥u∥ = (u, u)
1
2 . Note that the condition u′ ∈  L2(R) in the definition

of E corresponds to the boundary condition (4) and the condition u(0) = 0 is meaningful
because every element of H1

loc(R) is a continuous function. By ∥ · ∥∗ we denote the dual norm
on E∗, the dual space to E.

Actually, E is 1-codimensional subspace of the Hilbert space

Ẽ = {u ∈ H1
loc(R) : u′ ∈  L2(R)}

with ∫ +∞

−∞
u′(s)v′(s)ds + u(0)v(0)

as the scalar product.
On Ẽ we define operators Ẽ → Ẽ :

(Au)(s) := u(s + cosφ) − u(s) =

∫ s+cosφ

s

u′(τ)dτ,

(Bu)(s) := u(s + sinφ) − u(s) =

∫ s+sinφ

s

u′(τ)dτ.

Lemma 1. The operators A and B are linear bounded operators from E to L2(R)∩L∞(R)
satisfying

∥Au∥L∞(R) ≤ | cosφ| · ∥u∥, ∥Au∥L2(R) ≤ | cosφ| · ∥u∥,
∥Bu∥L∞(R) ≤ | sinφ| · ∥u∥, ∥Bu∥L2(R) ≤ | sinφ| · ∥u∥,

and
lim

t→±∞
(Au)(t) = (Au)(±∞) = 0,

lim
t→±∞

(Bu)(t) = (Bu)(±∞) = 0.
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Proof. Denote by

û(ξ) =
1√
2π

∫ +∞

−∞
e−iξtu(t)dt

the Fourier transform of a function u. Then

(Âu)(ξ) = (eiξ cosφ − 1)û(ξ),

|(Âu)(ξ)|2 = 2(1 − cos(ξ cosφ))|û(ξ)|2 = 4 sin2 ξ cosφ

2
|û(ξ)|2 ≤ ξ2 cos2 φ|û(ξ)|2.

Hence, by the Parseval identity, we have

∥Au∥L2(R) ≤ | cosφ| · ∥u∥.

Other inequalities are proved similarly.
Since, by the Cauchy-Bunyakovsky-Schwartz inequality,

|(Au)(s)| ≤
∫ s+cosφ

s

|u′(t)|dt ≤
(∫ s+cosφ

s

|u′(t)|2dt
)1/2(∫ s+cosφ

s

dt
)1/2

=

= | cosφ|
(∫ s+cosφ

s

|u′(t)|2dt
)1/2

,

|(Bu)(s)| ≤
∫ s+sinφ

s

|u′(t)|dt ≤
(∫ s+sinφ

s

|u′(t)|2dt)1/2
(∫ s+sinφ

s

dt
)1/2

=

= | sinφ|
(∫ s+sinφ

s

|u′(t)|2dt
)1/2

,

and u′ ∈ L2(R), then (Au)(±∞) = 0, (Bu)(±∞) = 0.

Note that the operator

(Pu)(s) :=

∫ s

0

|u′(t)|dt

acts continuously from E into itself.
We assume that

(i′′′) function U(r) is C1 on R, U(0) = U ′(0) = 0 and for some R > 0

sup
|u|≤R

∣∣∣∣U ′(r)

r

∣∣∣∣ < +∞.

We remark that the assumption (i′′′) is slightly stronger than (i) and is slightly weaker
than (i′′).

On E we consider the functional

J(u) :=

∫ +∞

−∞

{c2

2
|u′(s)|2 − U(Au(s)) − U(Bu(s))

}
ds.

Lemma 2. Under assumption (i′′′) the functional J is C1 on E and

⟨J ′(u), h⟩ =

∫ +∞

−∞
{c2u′(s)h′(s) − U ′(Au(s))Ah(s) − U ′(Bu(s))Bh(s)}ds (5)

for u, h ∈ E.



80 S. M. BAK, G. M. KOVTONYUK

Proof. The functional J can be expressed in the form

J(u) =
c2

2
(u, u) − Φ(u),

where

Φ(u) :=

∫ +∞

−∞
{U(Au(s)) + U(Bu(s))}ds.

Thus, we have to consider only the functional Φ because for the quadratic part the statement
is obvious.

Assumption (i′′′) implies that for every R > 0

sup
|u|≤R

∣∣∣∣U(r)

r2

∣∣∣∣ < +∞.

Then, by Lemma 1, for every u ∈ E the functions Au and Bu are continuous and there exist
constants C1, C2 > 0 such that

|U(Au(t)| ≤ C1|Au(t)|2, |U(Bu(t)| ≤ C2|Bu(t)|2.

This implies that Φ < ∞. A direct calculation shows that the Gateaux derivative of Φ exists
and is given by

⟨Φ′(u), h⟩ =

∫ +∞

−∞
{U ′(Au(s))Ah(s) + U ′(Bu(s))Bh(s)}ds.

Now we prove that Φ′ is continuous. Let ∥h∥ ≤ 1 and un → u in E. Then Aun → Au in
E, also in L2(R) and in L∞(R). Moreover, by Lemma 1, we have

|⟨Φ′(un) − Φ′(u), h⟩| ≤

≤ ∥Ah∥L2(R) · ∥U ′(Aun) − U ′(Au)∥L2(R) + ∥Bh∥L2(R) · ∥U ′(Bun) − U ′(Bu)∥L2(R) ≤

≤ ∥U ′(Aun) − U ′(Au)∥L2(R) + ∥U ′(Bun) − U ′(Bu)∥L2(R).

Due to assumption (i′′′), there exists C > 0 such that

|U ′(r)| ≤ C|r|, |r| ≤ R,

where R = max{∥Au∥L∞(R), ∥Aun∥L∞(R), ∥Bu∥L∞(R), ∥Bun∥L∞(R)}. Then

∥U ′(Aun)−U ′(Au)∥2L2(R) ≤
∫ a

−a

|U ′(Aun)−U ′(Au)|2dt+

∫
|t|≥a

[
|U ′(Aun)|2 + |U ′(Au)|2

]
dt ≤

≤
∫ a

−a

|U ′(Aun) − U ′(Au)|2dt + C

∫
|t|≥a

[
|Aun|2 + |Au|2

]
dt.

Since Aun → Au in L2(R), for every ε > 0 there exists a > 0 independent of n such that the
second integral above is less than ε > 0. Besides Aun → Au uniformly on [−a, a], then the
first integral above is less than ε > 0 for n is large enough. Thus, for such n we have

∥U ′(Aun) − U ′(Au)∥2L2(R) ≤ ε + Cε.
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Similarly, if n is large enough then

∥U ′(Bun) − U ′(Bu)∥2L2(R) ≤ ε + Cε.

And this implies that
|⟨Φ′(un) − Φ′(u), h⟩| → 0

as n → ∞.

Lemma 3. Under assumption (i′′′) any critical point of the functional J is a C2–solution of
Eq. (2) satisfying (4).

Proof. Let g(s) is a function from C∞
0 (R) and u ∈ E is a critical point of J. Then h(s) =

g(s) − g(0) ∈ E and

0 = ⟨J ′(u), h⟩ =

∫ +∞

−∞
{c2u′(s)h′(s) − U ′(Au(s))Ah(s) − U ′(Bu(s))Bh(s)}ds =

=

∫ +∞

−∞
{c2u′(s)g′(s) − U ′(u(s + cosφ) − u(s))(g(s + cosφ) − g(s))−

−U ′(u(s + sinφ) − u(s))(g(s + sinφ) − g(s))}ds =

∫ +∞

−∞
{c2u′(s)g′(s)−

−[U ′(u(s) − u(s− cosφ)) − U ′(u(s + cosφ) − u(s))]g(s)−
−[U ′(u(s) − u(s− sinφ)) − U ′(u(s + sinφ) − u(s))]g(s)}ds =

=

∫ +∞

−∞
{−c2u′′(s)g(s) − [U ′(u(s) − u(s− cosφ)) − U ′(u(s + cosφ) − u(s))]g(s)−

−[U ′(u(s) − u(s− sinφ)) − U ′(u(s + sinφ) − u(s))]g(s)}ds =

=

∫ +∞

−∞
{−c2u′′(s) + U ′(u(s + cosφ) − u(s)) − U ′(u(s) − u(s− cosφ))+

+U ′(u(s + sinφ) − u(s)) − U ′(u(s) − u(s− sinφ))}g(s)ds.

This implies that u is a weak solution of Eq. (2). By the embedding theorem, u ∈ Cb(R).
Since u(s) and U ′(r) are continuous, the right-hand side of (2) is also continuous. Hence,
u′′(s) is continuous, i.e. u ∈ C2(R) is a classical solution of Eq. (2) satisfying (4).

4.2. Main results. The functional J satisfies a part of conditions of the mountain pass
theorem. However, the Palais-Smale condition for this functional is not satisfied. Therefore,
in this case, critical points of J will be constructed in a different way, namely, by passing to
the limit as k → ∞ in the critical points of Jk.

To get the main results we need the following lemmas.

Lemma 4.

(a) Assume (i′′), (ii′) and c2 > max(a, 0). Then there exists ε > 0 independent of k such
that for any nontrivial critical points uk ∈ Ek of the functional Jk and u ∈ E of the
functional J

ε ≤ (c2 − a)∥uk∥2k ≤
2µ

µ− 2
Jk(uk), ε ≤ (c2 − a)∥u∥2 ≤ 2µ

µ− 2
J(u).
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(b) Assume (i′), (ii+) (resp., (ii−)) and c > c0. Then the statement (a) holds for nontrivial
critical points uk ∈ PEk (resp., uk ∈ −PEk) of Jk and u ∈ PE (resp., u ∈ −PE) of J
with a = c20.

Proof. We consider the functional Jk (the case of J is similar). Let uk ∈ Ek be a nontrivial
critical point of the functional Jk. Then, by condition (ii′), we have

Jk(uk) = Jk(uk) − 1

2
⟨J ′

k(uk), uk⟩ =

=

∫ k

−k

[(
1

2
V ′(Auk(t))Auk(t) − V (Auk(t))

)
+

(
1

2
V ′(Buk(t))Buk(t) − V (Buk(t))

)]
dt ≥

≥ µ− 2

2

∫ k

−k

[V (Auk(t)) + V (Buk(t))] dt.

Thus,

(c2 − a)∥uk∥2k = 2Jk(uk) + 2

∫ k

−k

[V (Auk(t)) + V (Buk(t))] dt ≤ 2µ

µ− 2
Jk(uk).

To obtain the lower bound, we assume on the contrary that there exists a sequence of
nontrivial critical points ukn ∈ Ekn such that ∥ukn∥kn → 0 as n → ∞ (it is not necessary that
kn → ∞). Then, by Lemma 1 from [3] (similar lemma to Lemma 1), ∥Aukn∥L∞(−kn,kn) → 0,
∥Bukn∥L∞(−kn,kn) → 0, and by assumption (i′)

|V ′(Aukn)Aukn + V ′(Bukn)Bukn| ≤ εn
(
|Aukn|2 + |Bukn|2

)
,

where εn → 0 as n → ∞. Since ⟨J ′
k(ukn), ukn⟩ = 0, we have

c2∥ukn∥2kn =

=

∫ kn

−kn

[
a
(
|Aukn(t)|2 + |Bukn(t)|2

)
+ V ′(Aukn(t))Aukn(t) + V ′(Bukn(t))Bukn(t)

]
≤

≤ (a + εn)∥ukn∥2kn ,

i.e. c2 − a− εn ≤ 0. But c2 > a and we got a contradiction that proves statement (a) of the
lemma.

Statement (b) follows from (a) with a = c20. It is enough to modify the potential V (r) so
that the new potential coincides with V (r) for r > 0 (resp., r < 0) and vanishes for r < 0
(resp., r > 0).

We note that this lemma is still valid for nonzero elements uk ∈ Ek (resp., u ∈ E)
satisfying ⟨Jk(uk), uk⟩ = 0 (resp., ⟨J(u), u⟩ = 0).

Lemma 5. Assume (i′′) and c2 > max(a, 0). Let uk ∈ Ek be a sequence such that ∥uk∥k is
bounded and ∥J ′

k(uk)∥k,∗ → 0 as k → ∞. Then also ∥uk∥k → 0 as k → ∞, or for any r > 0
there exist θ > 0, a subsequence of uk (still denoted by uk) and ηk ∈ R such that∫ ηk+r

ηk−r

[
|Auk(t)|2 + |Buk(t)|2

]
dt ≥ θ.
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Proof. Let

lim
k→∞

sup
η∈R

∫ η+r

η−r

[
|Auk(t)|2 + |Buk(t)|2

]
dt = 0

and gk ∈ C∞
0 (R) such that

0 ≤ gk(t) ≤ 1,

gk(t) = 1 if |t| ≤ k,

gk(t) = 0 if |t| ≥ k + 1,

|g′k(t)| ≤ C,

where C > 0 is independent of k. We set

fk(t) = gk(t)(Auk(t) + Buk(t)).

Obviously, fk ∈ H1(R). It is readily to verify that ∥fk∥H1(R) is bounded and

lim
k→∞

sup
η∈R

∫ η+r

η−r

|fk(t)|2dt = 0.

Then by Lemma B.2 ([23]) ∥fk∥Lp(R) → 0 for all p > 2. Since

∥Auk∥Lp(−k,k) + ∥Buk∥Lp(−k,k) ≤ C1∥fk∥Lp(R)

with some C1 > 0, we have

∥Auk∥Lp(−k,k) + ∥Buk∥Lp(−k,k) → 0

for all p > 2.
Let εk := ∥J ′

k(uk)∥k,∗ → 0 as k → ∞. Then

⟨J ′
k(uk), uk⟩ =

=

∫ k

−k

[
c2|u′

k(t)|2 − a
(
|Auk(t)|2 + |Buk(t)|2

)
− V ′(Auk(t))Auk(t) − V ′(Buk(t))Buk(t)

]
dt ≤

≤ εk∥uk∥k.

Due to Lemma 1 from [3], we have

∥Auk∥L∞(−k,k) + ∥Buk∥L∞(−k,k) ≤ C.

Fix any p > 2. Then, by (i′′), for every ε > 0 there exists Cε > 0 such that

|V ′(r)r| ≤ εr2 + Cε|r|p, |r| ≤ C.

Thus, we have
c2∥uk∥2k ≤

≤
∫ k

−k

[
a
(
|Auk(t)|2 + |Buk(t)|2

)
+ V ′(Auk(t))Auk(t) + V ′(Buk(t))Buk(t)

]
dt + εk∥uk∥k ≤
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≤
∫ k

−k

[
(a + ε)

(
|Auk(t)|2 + |Buk(t)|2

)
+ Cε (|Auk(t)|p + |Buk(t)|p)

]
dt + εk∥uk∥k =

= (a + ε)
(
∥Auk(t)∥2L2(−k,k) + ∥Buk(t)∥2L2(−k,k)

)
+

+Cε

(
∥Auk(t)∥pLp(−k,k) + ∥Buk(t)∥pLp(−k,k)

)
+ εk∥uk∥k.

For a < 0 we can choose ε > 0 small enough so that a + ε < 0. Then

c2∥uk∥2k ≤ Cε

(
∥Auk(t)∥pLp(−k,k) + ∥Buk(t)∥pLp(−k,k)

)
+ εk∥uk∥k,

which implies that ∥uk∥k → 0 as k → ∞.
For a > 0, by Lemma 1 from [3], we have

(c2 − a− ε)∥uk∥2k ≤ Cε

(
∥Auk(t)∥pLp(−k,k) + ∥Buk(t)∥pLp(−k,k)

)
+ εk∥uk∥k.

Then, since c2 > a, we can choose ε > 0 small enough so that c2 − a − ε > 0. And also
∥uk∥k → 0.

Lemma 6.

(a) Assume (i′′), (ii′) and c2 > max(a, 0). Let uk ∈ Ek be a sequence of nontrivial critical
points of the functional Jk such that the critical values Jk(uk) are uniformly bounded.
Then there exist nontrivial critical point u ∈ E of the functional J and a sequence
ηk ∈ R such that a subsequence of uk(t + ηk) − uk(ηk) converges to u uniformly on
compact intervals together with first and second derivatives.

(b) Assume (i′), (ii+) (resp., (ii−)) and c > c0. Then the statement (a) holds for nontrivial
critical points uk ∈ PEk (resp., uk ∈ −PEk) of Jk and u ∈ PE (resp., u ∈ −PE) of J
with a = c20.

Proof. Due to Lemma 4, ∥uk∥k 9 0. Then, by Lemma 5, for any r > 0 there exist θ > 0,
a subsequence of uk (still denoted by uk) and ηk ∈ R such that∫ ηk+r

ηk−r

[
|Auk(t)|2 + |Buk(t)|2

]
dt ≥ θ. (6)

We set
vk := uk(t + ηk) − uk(ηk).

Then ∥vk∥k = ∥uk∥k, Jk(vk) = Jk(uk) and J ′
k(vk) = J ′

k(uk). Moreover, since ∥vk∥k is bounded,
there exists a subsequence (still denoted by vk) that converges weakly to u ∈ H1

loc(R) (i.e.
weakly in H1(a, b) for any finite interval (a, b)).

We show that u ∈ Ẽ. Indeed, v′k → u′ weakly in L2
loc. Hence, for every a < b∫ b

a

|u′(t)|2dt ≤ lim
k→∞

inf

∫ b

a

|v′k(t)|2dt ≤ lim
k→∞

inf ∥v′k∥2k ≤ C.

Thus, passing to the limit as a → −∞ and b → +∞, we have∫ +∞

−∞
|u′(t)|2dt ≤ C < +∞,
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i.e. u ∈ Ẽ.

Now we check that u ̸= 0. By the compactness of Sobolev embedding, Avk → Au and
Bvk → Bu strongly in L∞

loc(R) (i.e. uniformly on finite intervals) and in L2
loc(R). Then, by

(6), we obtain ∫ r

−r

[
|Au(t)|2 + |Bu(t)|2

]
dt ≥ θ > 0.

This implies that u ̸= 0.

We note that U ′(Avk) → U ′(Au) and U ′(Avk) → U ′(Au) in L∞
loc(R), because Avk → Au

and Bvk → Bu in L∞
loc(R).

Let g ∈ C∞(R), g(0) = 0 and g′ ∈ C∞
0 (R). Then, for k is large enough, S := suppAg ∪

suppBg ⊂ [−k, k]. And for such k, let gk ∈ Ek be the primitive function of the 2k-periodic
extension of g′|[−k,k]. Then

⟨J ′(u), g⟩ =

∫ +∞

−∞

[
c2u′(t)g′(t) − U ′(Au(t))Ag(t) − U ′(Bu(t))Bg(t)

]
dt =

=

∫
S

[
c2u′(t)g′(t) − U ′(Au(t))Ag(t) − U ′(Bu(t))Bg(t)

]
dt =

= lim
k→∞

∫
S

[
c2v′k(t)g′(t) − U ′(Avk(t))Ag(t) − U ′(Bvk(t))Bg(t)

]
dt =

= lim
k→∞

∫ k

−k

[
c2v′k(t)g′(t) − U ′(Avk(t))Ag(t) − U ′(Bvk(t))Bg(t)

]
dt = 0.

Hence, u is a nontrivial solution of Eq. (2).
Finally, the right hand side of Eq. (2) for vk converges in L∞

loc(R) to the right hand side of
that equation for u. Therefore, v′′k → u′′, hence, v′k → u′ and vk → u in L∞

loc(R). In particular,
u(0) = 0 and u ∈ E. And statement (a) is proved.

Statement (b) follows from (a) with a = c20. Enough to modify the potential V (r) so that
the new potential coincides with V (r) for r > 0 (resp., r < 0) and vanishes for r < 0 (resp.,
r > 0), and note that the limit of a sequence of monotone functions is also a monotone
function. 2

Note that this lemma is still valid if, instead of a sequence of critical points, we consider
a sequence uk ∈ Ek such that ∥J ′

k(uk)∥k,∗ → 0 and Jk(uk) is bounded.
Combining Lemma 6 with Theorems 1 and 2, we obtain the following results.

Theorem 3. Assume (i′). Then

(a) under assumption (ii+) for every c > c0 equation (2) has a nontrivial nondecreasing
solution u ∈ E;

(b) under assumption (ii−) for every c > c0 equation (2) has a nontrivial nonincreasing
solution u ∈ E.

Theorem 4. Assume (i′′), (ii′) and c2 > max{a, 0}. Then equation (2) has a nontrivial
solution u satisfying (4).
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